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Comparison of Different Modes of Representation of Multivariable Systems

'by

Kumpati S. Narendra and Lyle E. McBride, Jr.

Gordon McKay Laboratory, Harvard, University'

Cambridge, Massachusetts

- .ABSTRACT

A multivariable system may be conveniently represented either by a ma-

"trix of transfer functions or by a set of first-order differential equations. The

mode of representation depends on the nature of the problem and the constraints

involved, The-.paper-dealls-with the relative merits of several methods as well

as their inherent limitationsA Concepts .such as ".,controllability,# .observability, '

-satructure" and "interaction" which are peculiar to multivariable systems are

examined to form a basis for the comparison.

I. Introduction '\

The extension of single-variable control theory to linear systems having

%several inputs and outputs by defining suitable input and output vectors and trans-,

fer matrices has been considered by many authors. Such matrices, defining the

over-all characteristics of the system, are logical extensions of familiar fre-

quency domain methods used in the case of single-variable systems.

The inadequacy of the transfer matrix approach to define completely even

the terminal behavior under certain conditions was pointed out by Freeman[( 1

S. . i • . A ,



TR356--

adMesarovic [2.1. The lattar used the concept of structure to deve~lop different

subsystem inte rconnect ion's to6 achieve the same 'terminal behavior.

More recently'. in the study of optimal control, interest has shifted to the

tim dmanan te tae ecormethod involving astof first-order ditferen-

tilal equations has been hUs#ad for the representation of the Multi vra r Iab4 10SysteaM.
Torm MS uc'h' s c nr laiiy ad"osrvability" have 'b een defined In this

context to dcribe pertinent characteristics.

The various conceapts such as "srcue""into raction, " controllability.S

"*"observability," etc., are peculiar to multivariable systems and the aim of the

pape r Is to indicate the relation between these concepts as well as the advantages

a nd limitations of the two methods. At this time, When 'the Synthesis Of Multi-

variable 'systems is s-till In its infancy, [tris felt that a discussion of the various

,methods of representation and the problems to which each is bs suited will

facilitate frthe r Work in the field._

11. Methods of Representation

a. The Transfer Matrix Approach to Multivariable Systems

'Over the last quarter-century a considerable body of knowledge about

linear control Systems has been built up. Frequency response rnin e

sponse and stability criteria, pole -zero, root-locus and compensation Methods,

alng with many oteehnius have. made possible, the analytic design of

even extremely complex controls for dynamic systems.

These tool.s are bedon the concept of a transfer function which uniquely

describes a real physical ýsystemn under certain conditins oope ration. Among.

:the conditioris whic h niust be fUlfilled if, the trans8fe r functio n representation is

to be accurate are the following:



TR356 -3-

"(1) The system must be approximately linear around its operating point

so that it can be described by a linear, stationary differential equation trans-

formable into an algebraic equation in the Laplace transform variable a.

(2) The system must be operated in such a manner that a signal enters

the system or a subsystem at a prescribed Input terminal, and leaves only at

the output; information passes through the system in only one directon, and a.

single transfer. function describes a single.input, single-output system.

(3) Only problems in which all initial conditions are zero or of no im-.

portance (as in steady-state behavior) canbe treated bythe transfer function

method; in deriving the transfer function all information about the effect of

initial conditions which Is inherent in the differential equation Is discarded.
(This does not implythat the Laplace transform equivalent of a differential equa-

tion contains less information than the equation itself; it is only in obtaining the

"transfer function-that the terms representing the effect of initial conditions are

dropped..)

Transfer function techniques have been extended to systems having mul-

tiple inputs and outputs by defining suitable input and output vectors and transfer

matrices. Such matrices have been used in determining the stability of multi-

variable systems, in designing controllers to achieve desired dynamic perform-

.. ance and in specifying the conditions under which a desired transfer character-

istic is realizable.

The basis of this extension is to define a vector X(s) consisting of the

Laplace transforms of all the input variables in a given order, a-vector Y(s)

consisting of the transforms of all the output variables ;similarly ordered, and
"a transfer matrix A(s) such that the matrix equation

Y=AX (1)
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who ro Y. Xu . A

-is valid for arbitrary input fu;nction combinations

A system repre sented by a transfer matrix A may be Considered to be a

combination of single -variable 8Sytems interconnected in the manner of Fig. 1.

Xi ---

12 I

a.1, an

Figure 1

This combination of single -variable su i.bsys tems isý now a multiva'riable

system which, obeys, Eq. -1. -If any obination of input functions x 1(s)i given,

the resultIing outputs y.(s) ca n 'be found f Irom, th is eq uati Ion,4 sin ce a. '3 are fixed
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characteristics of the system. If the x Is are the only variables directly affected

by agencios outside the system, and the y 1 s are the only'variables observed, the

matrix A contains the same information about the multivariable system as the

transfer function does for a single-variable system.

However, the multivariable system is found to possess properties of in-

"terest"which do not exist in a single-variable system. Some of these have been

discussed in the literature under the names of interactions, inte-rrelations and

intercoupling.

(1) Input interaction. This quality, which may be roughly defined as the

extent to which all inputs affect all outputs, is a function of the conventional

transfer matrix A only. Complete input non-interaction is defined by Boksenbom

and Hood [3) as the conversion of the n-input, n-output multivariable system into

"n single-variable systems; in other words, in a non-interacting system each

input affects one and only one output. Non-interaction is demonstrated in the

matrix representation by a diagonal A matrix (or more generally, one in which

* each row and column contains only one non-zero component).

(2) Output interaction. This property of multivariable systems has been

discussed from various points of view, usually with a desire to eliminate it as

far as possible. Output non-interaction is referred to by Freeman [I] as "inde-

pendent output restoration," and is described in terms ot the reaction of the sys-

tem to a non-zero initial condition at output yi, when all inputs are identically

zero and all other outputs are initially zero. If under such conditions the dis-

.turbance foilowing the "turning on.of power" in the system is confined to output

y.. the system is considered non-interacting with. respect to that output.

Mesarovic [2] defines a similar property called "interrelation" or "in-

teraction," as the reaction at other outputs to an external disturbance applied to

output variable y.
- .. _ ,



TR36 -6-5

SBecause of conditions (2) and (3) which limit the transfer function to prob-

1emss involving unidirectional signal flow in the absence of initial conditions, Eq.

I does not contain any Information about the reaction of the system to either a

disturbance at the output or a non-zero initial condition. To specify output In-

teraction, therefore, additional information not contained in the transfer matrix

is necessary.

-(3) Output dependence. This term is intended to describe the character-

istic called "Interrelations based on External Changes o( the System" in reference

[2J. It describes the possibility of obtaining any Independent set of desired output

functions by suitable manipulation of the input functions. It :a.ay therefore be

said that the outputs are Independent if matrix A is non-singular when m n. If

m < n it is apparent that at least n - m outputs must be dependent on the others.

* In fact, in general, if the rank of A (the order of the'highest non-zero determinant

'in A) is equal to n, the n outputs can be independently varied; if the rank of

A + q - n, then q outputs can be expressed as functions of the other n - q. We

could then define the case where q = 0 as output independence, and all other cases

as output dependence of the qth-order. (Here output dependence is equivalent to

"Linfinite intercoupling" in reference [1].)

The extreme case of output independence is clearly the same as the case

of input non-interaction; the outputs are most independent (if the superlative is

permissible here) when each depends only on a single input.

b. "Structure" of a Multivariable System

The inability of the transfer matrix A to resolve the question of output
iinteracton led the authors of references [I] and f•] to introduce the concept of

-structure.

'Although their points of view differ slightly, both Freeman [1] and

Mesarovic (Z] define "canonical structures" which are specific ways. of silb-



TR3 56-7

'dividing a multivarlable 'system Into single-input, -single'-output spzbsystemns de-

sc ribed by trans fer functions. :Figure Ii for example, r'oprosents the WP canon~

icAl structure" of refer*nce (ZI; various other comibinations,1 called V-canonical,

H-canonical and non-canonical structures, arc shown by Mesarovic to'obey

Eq. 1 equally Well, though the transfer functions of-the ,co6mponent single-variablo

systems are no longer simply the components of the -matrix A.

::A proper interpretatin of tesrcture is made to yield some Information

about the presence or. absenceo of output ineacin ifi0sasme htalo

the blocks of Fig. 1 are Ideal mingle-variable systems which are capable of trans-

mitting information in only ,one direction, then a glance at the diagram Indicates

that no disturbance at y1 can be transmitted to any other output. The P-canonical

structure is then said to be output non -inte racting.

Fiur +

Th Vcaoicl tucuronth thr an e.g. ig 2 s nei

whchevryoupu vribl itea~tswthevryoter Adhtubace(oYii

fucton of V and F2 . Such a tructur is decrbe as cmpetl inter-

acting..'



T R35-8

A similar use-of structure, or the subdivision of multivariable systems

into single'variable blocks, has arisen in cWnnection with the concept (see Sec-
"tion U, c)of Controllability. For example, Kalman [4] discusses the uncontrol-

lable system shown in Fig. 3.

i " Figure 3 .

S•! :If• this diagram is interpreted as representing the state variable equa-

S~tions

S3I = "X1 +dlU (2)

S-x"2 +dXu

g+

it is apparent that dgk1 - d13c2 = ,(dzXl -,dlx 2 ) and_ that the combination dzxI
St dd r iX represents an uncontrollable state variable (one Which cannot be altered

• regardless of the control applied). On the other hand, since the system of Fig.

4 which is identical in transfer function has only one state variable and is com-

pletely controllable, an apparent association between structure and controlla-

bility has been established. Gilbert (5] gives additional examples of structures

which are not completely controllable; he also emphasizes the fact that the

, transfer matrix does not necessarily indicate the correct order of the system

'by drawing structures of different orders which have the same transfer matrix.
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U Y

Figure 4

c.: The State Vector Method

The frequency domain approach using the concept of transfer function,

described in the preceding sections, has been used in the design of control sys-

terns for over two decades. In spite of its wide application the method suffers

from several inherent limitations. The tenuous relationship existing between

frequency and transient responses of a system results in the designer having

only qualitative information about transient response. Hence, when the tran-

sient response is rigidly specified the frequency domain method is not usually

suitable. The limitations of the method also become obvious when dealing with

non-linear or time-varying systems. When time responses are of interest, it

is found that a direct investigation of the behavior of the differential equations

1 governing the system directly yields more pertinent results. This has resulted

in the "state vector approach" wherein the differential equations describing the

physical system are studied and the system behavior is controlled directly in

the time domain.
In the state vector method the multivariable system is represented by a

"set of differential equations of the form

. .... xi1f .... Xn Ul. uZ ' Ur p1 . "'" ps t.) i= 1, .. .n (3)

xj(O) = C.

orin vector notation
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*api kX; LUP;t0 X(0).C

Thoex represent "n" state variablos Which comip'ltoliy-specify tho stateof ýUthe

:plant at ,any initant.uKt are the rference inputs to the system and Pi(t) the

unintentional distuba'ncas entering the system. The coordinate system with

xlZ . x, as coordinates sp.n anspcwhich i calld the state space.

The vctior X whose components are x1 the state va rials isclldtett

veOcto'r and the 'curve t raced b y the state vector with the passage of time is

known as a trajectory. It is worthwhile reimembering tha It the mathematical

model, (represented by Eq. 3)1.i only an assumption. The sirnplification intro-'

duced by the assumptiopnV~ aý beIhAyor of the :sysatrn for t~ to Is corn-

pletely determined oad pcfed.

in general,the probleme a myecosidoredsth

problem of determining the Inputs U tb the systemi such that the output X(t) cor-

* responds an closely as possible to some desired behavior.

1f we confine our attention to the problem of control of systems which

* are linear, the differential equ ation of thea system ma y-be wri tteon as

*X(t) A A(t) ýX(t) + B(t) U(t) + F(t)(4

where X and Fare n dimensional vector functions, A is an' (n x n) matrix

.,function and B 'an (n x ri) matrix func'tion. The very first question that arises

.in'the analysis of such a system i s whethe r or not the state of the system can

be controlled arbitrarily by the application of. a 'su~itable control function U(t),

i. e., whether any s tate of the system can be driven to any other desired state',

by s~uitable control cin u aa sytmhs been defined to be controllable

[4].' It i s o ,bvious th at in eerlcontrolaitys a pr e r e quisite to any ItyIp Ie

of optimal control.

The solution of Eq. 4 'represents the behavior of the "state of the system,

and is defined-by aset of functions x. (t). Thus X(t) implies-
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X(t; X0 t94 (5)

where

X (to; X0. 10) X

and x ft) are the components of X(t) in the state space. if the, functions A(t)t ýB(t)

and Uit) &re defined for all .-co t < t and are bounded for each t. the solution

t t

8401*( t0 X, 0 +.( U()0 ) :B(T) Urd +. lit r)F r~
t t
00

where 40t, to a~ the principal matrix ýSolution of

and is' called the transition matrix of Eq. 3. In the absence of external dis~turb-

ýances ]F(t), Eq. 4 reduces to

t

X(t) 4(t, to X0 + Oft, T) B(T) U(TJ dr (7)

-to

rand whený u(t) is a'sca lar to

X(t)=*~ t) 4S(t.-r)B (T) U(T) dT 8

ýwhere B(t) is an n dimensional vector function. A, state (X )at time to may be
.00

considered to be controllable i( there exists -a control U(t) which transfers the

system to the state X = 0 a some timet

X~ ~(i 1) C (t 1 f.) B (T) U(T) dr -(9

to
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sothat -X I to Ar) B(T) UlT)d-rholds for some U(t). The mathematical .

t

"theory of the controllabi ity of linear dynamical systems Is discussed In consid-

"ierabla detail in (61 and the Conditions for controll0bility of time-varying and

constant systems are derived.

Considering the case when A and B in Eq. 4 are constant, the system is

"completely controllable if, and only If, the constant n x rn matrix A3, AB , .
.An I B) has a rank "n." This ensures that the control function U(t) operated

on by B spans the entire state space, so that each state variable may be Inde-

"necessary and sufficient conditions of controllabilityas well as other mathemat-

ical concepts the reader -is referred to reference [61.)

Considering the time-invariant case the equation describing the system

is of the form

X=AX + BU (10)

when U is a vector, and

": AX +Bu 11)

w . when U is a scalar quantity. Since by definition of controllability it is clear

that it is invariant to any non-singular linear transformation, if we define

xpy
Eq. 10 becomes,

P APY+P BU. (12)
By the proper choice of P it is seen that the equation may be reduced to normal

form. If in Eq. 10 it is assumed that X is already in its principal coordinates,
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ýA is in'its -Jordan 'canonical form. Assuming that the matrix A has "qI" distinct

olgnvauosY ** ad a cienvlue~q ~Of multiplicity .(n -q), X,B

ýiand A in Eq. 11I may be' expressed in the following form

lxa b2

qj
ýX a q xn b ~ (13)

Xq+, b'q'+

- q+ l

xq ~~~ b0

0.0

= 0 xq~lt

ine turaniin maytbe ixprse in bloc thea fomassonrnFim6
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I.j.

Figure S.

~~~ j b*t

__(q

Figure 6

To make I tB have 'In linearly independent componnt itiVlerta

b .b and b shudnot be ze ro in Fig. 6. b '0
_2 q q+1, n-q q +l1,n-q

ensures that the 'state variables x c. x an be controlled

independently. In other words, at least one of the control inputs'should affect
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q n which is. expressed by thw fact that the matri~x** q qnd + n - q

BAB, *. An - B) -should have a ran Ik "n."

Cotolability as defined above implis that by the suitable aippliatio

of A control function U the state variables mnay be ýAffecte'd Indape ndently in,

tesothat for some value of "t" the variables x1 my be made to as sume a

specified value. From the above discuission it is clear that a 'system of the

form shownt in Fig. 7a its controllable' while the one indicated In Fig. 7b Is not.

XlX
XX

(a) Xl

(a) (b)

Figure 7

When'the state vector representation is used. for the description of a

multivariable system, the problem generally becomes the determination of

U.(t) (subject to constraints on U and X) to minimize or maximize a perform-

.ance criterion. The state vector X is driven from an initial state X. to a

final fixed s tate Xor more generally a varying state Z(t).

'A second. concept (4] which is of importance. while us ing the state vector

method'is termed "observability"w and a plies to the situation when the s tate
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vectors are not directly accessible but have to be computed from the available

A ata.' In, particular~in'"the linear case if the out'puit IS :smuch that its -components

are linear combinations of the state variables we have

Y CX (05)

'Where C is a p x n matrix function and Y sapx1vetrThestm is

".1observable" if all the state variables xof the state4 vector can be determined

by observing Y. ove r a finite interval of time.

Assuming that the equations of the system are expressed in terms of the

:principal coordinates and

UAX +BU (6

-and

and if A has distinct elgenvalues X. X the b -loc Ik d I aga rpesen ta-

tion of the system is as shown in Fig. 8.

y

U C

Figure 8
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ItS is gon that each component v1 pf the Vector, V? controls the corresponding

state * X.if theilth row of B contains only zero element., V is zero Aan

is uncontrollable. ,SimilarlyO If the elements of tho jth column of C vanisih, Xj

is otosrvable. This definition is suggestetAs d in reference [

For the more c~omplex case when the system has multiple characteris.,

tic 4oots :such 'a simple definition is not valid.' Due to' the internal feedback in

the system, Fig.4 5 variations in xj may be observed by observing the, other

state variables. Similarly, the system may be completely 'cont rollable. even

though a row of the B matrix Vanishes.

111. 'Relative Merits of Various Methods of Rep~resentatlon

a. 'The Transfer Matrix'

The matrix A, which relates input and output variables in the frequency

domain, Ila the 'Simplest and most direct means of applying techniques developed

for single-variable servomechanisms to the field of multivariable systems.

(1) Input non-intercin Iadion to the problems of controller

'design involving stability, steady-state errors and similar properties of the

.component subsystems (a number of which have been studied in the literature

by means ýof the transfer matrix), the synthesis of a Icontroller to produce in-,

p ut non-interaction from an interacting plant may be highly desirable in order

to reduce the number of degrees of freedom of the designer and simplify the

dynamic analysis. The requirements for nion-interaction can be directly and

gene rally obtained from the matrix A.

Let us first, consider a given interacting plant of known transfer ma-

"trix A. which is to'be connected in cascade '(Fig. ý9) with a. forward acting

-controller whose transfer matrix is A.c
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Figure 9

Then A A'Xi Y AX, and A, the resulting over-all transfer function,

P C

"is to be diagonal.: The control elements are determined from

' . A- A.A An(art6.] A;.Mn[it] An -

or

a aci a a~ (17)

thence

a .

The control elements actj can be determined if A is non-singular.

From Eqs. 17 and 18 it is apparent that the ratios of the elements in a given

column of the matrix A are fixed by the condition that the total system be non-
C

interacting (that A be diagonal). However, the freedom to determine an arbi-
trary transfer matrix A remains, as each column may be multiplied by an

arbitrary transfer function a...
If control elements are all connected in the feedback path, the block

diagram of Fig. 10 results, and . .

Ap(X +A Y) Y or Y= (I -AA A X AXp C -p c P

then

:"A -(I-A A )A A- A =A A A-PC p pc .-

A A A A .4-6..].'c p a.. i
1J

"i :: _ :/-. . . : . , . " : : : " : - ,. : " "L
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X A pY

Figure 10

"Then we find that

a -a f :(19)

S• . . .. - I zo
_a = apI . (20)

In this case, all off-diagonal elements of the controller are fixed by the non-

interaction requirement, but the diagonal terms remain free to establish any

desired diagonal transfer matrix A. Here both A and A must be non-singular.
p

rThe requirements of non-singularity are not surprising. If A were
ýp

singular it would indicate that one or more of the outputs is not independent

(is a constant function of the other outputs, regardless of the combination of

inputs applied). It is clearly impossible, under these conditions, to make the

outputs vary independently by changing the plant inputs. If A were singular,

it would indicate that one output is always zero (since A is diagonal). This is

.possible with a feed-forward controller, since by a-proper 'selection of the n1

inputs any'number of outputs can be made zero (if A' is non-singula
p I

feedback controller would then only have n -Inon-zero inputs, and consequently

4

t
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its output could contain only n - I independent functions of the plant output, not

enough to determine uniquely the system outputs.

"Thus, in an n x n system there always remain n conditions, after non-

interaction has beon attained which can be chosen to produce the desired diago-.

nal transfer matrix. The use of a feedback controller has the property (which

.may be advantageous) that the controller components determined by the condi-
tion of non-interaction are independent of the dynamic characteristics chosen

for the diagonal elements of A.

(b) The limitations of..structure." The use of structure as a necessary

property in the definition of a multivarlable system was first suggested in order

to provide information about output interaction; if a multivariable system is

really made up:of ideal, isolated, unidirectional single-variable systems (as

the subdivided block diagram implies), then it is clear that the system of Fig.

I is output non-interacting while that of Fig. 2 is completely interacting.

A difficulty may arise, however, if we require quantitative information

Sabout the interaction. If all inputs are identically zero (X 0) and a known

disturbance yl(S) is applied, what is the resulting y (s)? In the system of Fig.

1. "the answer is obviously y 0. In the structure of Fig. I I

x y

aa

a2 1
a

SFigure I I
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*- y1 (aI/ a. But 4n the V-canonical structure of Fig. it w.hl it seeM.

clear that y (s) / 0,0the only equations at our disposal (when X o 0) are

0 , .y( )

.-or in matrix form (I FV)Y ' 0, which in general has only the trivial solution

ýyl y

.The problem.ii directly traceable to condition (2) which was stated as

a requirement for transfer function representation in Section 11: signal flow

must be unidirectional. We have been able to violate this condition in th case

-of Figs. I and 11 only by tacitly defining the reverse transfer function of a

'block to be zero. As long as a iven block encounters Input signals at only one

of its terminals, this assumption provides a solution; in Fig. 2, however,

-block F, encounters an input signal simultaneously at both terminals: yl at

the output and Y1VZIFZVIZ at the input. Clearly, no solution is possible in

the general case. In order to obtain a meaningful quantitative description of

output interaction, a system description valid for bidirectional signal flow is

needed. Such a representation is discussed in the following section.

• .A similar difficulty arises in the representation of uncontrollable (or

unobservable) systems by means of a structure, or block diagram of first-

, ,order transfer functions. As mentioned in Section'11, an intuitive interpreta-

tion of Fig. 3 results in the equation

-2-

* -w er-z dx 1 r dx . . .

Consider, however, the network of Fig. IZ where u is the input voltage

and x and x2 are output voltages measured at the points indicated.

SiI
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FTigure 12

If the component values are properly chosen, the applicable equations are

k + x U (23)

+ 4k +: it 0-7

where a J41 x., If these equations are transformed into the frequency domnain,:

and all Initial conditions are not equal to zero, ,the resulting transfer -function

equations are

x ()1 (s) = xS(u

corresponding to the block diagram of Fig. 13, which is similar to that of Fig. 3.

U

Figure 13
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In this case, however, the re are two initial conditions, z(O) iand k(O), which'

cannot be brought to zero by any choice of ..

From this' example it can be seen that, because the transfer function

is valid only when all initial c€nditions are zero, neither a transfer function

nor a block diagram made up of transfer functions can uniquely specify the
number of initial conditions necessary to define a general sOlution to thersys-

tem equations, and therefore neither the transfer matrix nor the structure

,can specify the order of the system, although the minimum order can be com-

puted from the transfer matrix. The statement of reference [51 that uncontrol-

lable or unobservable elements do not appear in the transfer matrix, applies

equally to the block diagram or structure of the system.

'In short, the structure or subdivision into single-variable blocks of a

rnultivariable system gives no more information about the response of thesys-

tem than does the transfer matrix. This result is well known.in the case of

single-variable systems.

The state vector, or differential equation reprCsentation, which de-

scribes completely the effect of initial conditions, can be used to determine

whether or not output interaction exists. Since ,.(t) is the response of x. to

a unit initial condition on x., complete output non-interaction in accordance
with Freeman-s definition corresponds to a diagonal 0 matrix; if 4i(t) 0

:an initial condition in x. has no effect-on xi(t).
While output interaction of this type can be expressed in terms of the

n matrix, if interaction is more generally interpreted as the effect of an

externally imposed change in one output variable on another output the state

vector representation:does not provide adequate information.
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c. A Multivuriablo Systoým as A Generalized Electric Network

One multivariablo P ys toam Which has boon studied in great detail isx the

electric notwýork made up of constant impedances and stationr voltage sources.

in addition, by means of either the Impedance analog or the mobility analdog

mechAnica syStoems can be expres sed In toerms of equivalent'networks. Further-

ýmore, & great mranyý, if not All, other typos of linear, ,staitionary' syti r

.governed by the same, differential equations applicable to networks; thus awide,

variety of systems, including all linear electromechanical:system's, can be

studied 'by m~eans of network analysis.,

(1) Inputs and outputs. To make a connection between the representa-

tion of the ,prece'ding' section and the network representation, let us consider a

system which has, n.inputs x.. x~And m outputs Y, ...ýfj

In the above discussion it was assumed that the inputs x1 are Independent

variables which may be manipulated fo r the purpose of altering the outputs Y1;

the outputs are defined as variables which cannot be directly manipulated ex-

ternally, but, in whose values -we are Interested. It is Assumed that although A

other variables exist inside the System they cannot be manipulated or are not

.of interest; therefore, they are omitted.

If the' system is an' electromechanicl system with n terminals(rmr

properly n ports) it is apparent that two variables are present at each terminal.

'For example, a single shaft is associated simultaneously with a position and a

torque; an electrical terminal similarly has a, voltage and a current. Other

combinations of variables may be chosen (velocity and torque,. voltage and pow-

er, etc.") but ,the condition remains that the state of one terminal is specified by

two, variables. Thus an n-port network has 2n variables existing at 'its terminals..

if, for example, the n voltag~es are fixed by external connections, the'n

currents are completely: de termined -for a given network. In general, no c'ur rent
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can bo altoered 'Without simultaneously changing one or more voltages, We can

then say that the n voltages "are Independent variables4,, me aning that they'are-

determined by forces .outside the network; the n currents must then be depend-

ent,# -determined b'y the network characteristics and'by the n independent volt-

ages. Of course It in not necessary that the Aindepenident variables all be volt-

:ages or all currents; any combination of voltages and currents may be consid-

0 red independent, with one restriction: the voltage and current at any one ter-

minal may not simultaneously be both indppendent or both dependent. This is

a consequence of the general statement that voltage and current at any point are

'determined by the simultaneous solution of two equations, one representing the

curront-voltage re1lations-hip on one side, the othe r representing a similar re-

la4tion on the, other siLde of the point. Neither conditions inside the network nor'

those outside can alone determine both current and voltage

If we now consider, thi's network as a, c ont rol1 systcm, we must classify

the Inputs and outputs as dependent or independent. Clearly the inputs are in-

dependent, since they are manipulated f rom the outside, and the outputs are

dependent, since they are to be controlled by the inputs. Since, however, the

inputs a~re not generally found at'the same terminals as the outputs, he selec-

tion of n inputs and mn outputs will mean that the system has n + ports, and

hence 2(n + m) terminal variables. We then are left with mn independent vari-

able s which are not inputs, and n dependent variables which are not outputs.

These cobe tteotu nrrespond to the conjugate variabe athouptnd input te'rminals.

Let us call the mn independent variables secondary inputs, 'and the n dependent.

variables secondary outputs.

(Z) 'The Kron impedance mixed method.: A very general method of solu-,

tion of electric network problems is the Kron mixed method. described in Chapter
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IV of reference [7]. It is applicable in Its original form to networks containing

* any combination of constant inductances, constant-capacitances, 'constant reoist-

ances, and constant froquency voltaga and cur rent generators. As external
Sperturbations or nputs, it is aissumed that betweoen any pair of terminals there

'maybe connected either a constant voltage source or a constant current source,

It Ts assumed that if the nhumber-of external voltage and curront sources is less

than the number of node pairs of the network, the remaining node pairs are con-

nected by voltmeters. A"voltmeter mesh" may be considered equivalent to a

constant current generator of zero amplitude.

If our network is to represent a system which has a transfer matrix of

the type discussed In the previous section, all outputs must be zero when all

'inputs (primary and secondary) are zero. For the network, this condition is

true only if no internal sources are present. Our basic network thus contains

only impedances. 'This condition does not exclude mutual 'impedance between

branches, whether symmetric, asymmetric or unilateral.

The network impedances are defined in terms of the relation e z(4)i,

where e and I are the cortplex descriptions of a sinusoidal voltage and current
of frequency " This, however, is commonly recognized as being a special

case of c(s) Z z(s) i(s') where the transform variable s, -is replaced by jo. 'We

can, ",therefore, interpret the impedances as transfer functions, and after solv-

ing the network equations find the output currents, -for example, for any arbi-

trary input form.

"The notation in the following discussion is in part that-of reference [7].

If there are no internal sources, the network obeys the matrix equation

'Er Z'j fro reerence [7], Eq. 44-10) -(24)

where'
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*, X

M jM

* *iV

Y~v + I 'V +

P P

Z IziC ZC.t

Z As the network impedance matrix. C is the transformation matrix re-

'lating the branch currents to the mesh currents, C~ is the transpose of C. E1 is

the known voltage applied to the ith node pair, *Vis the unknown voltage appear-

ing across the jth node pair, *Jk is the unknown current in the kth Maxwell mesh,

is the unknown current in the external voltage generator., E1 and I~ is thes

'known current applied in the external circuit between thndsof the ith pair'.

ýAlso the subscript M is the number of Maxwell meshes in the, original network,

V is the number of external voltage sources applied and P is the number of node

pairs of the network. (V< P is required by Kirchoff's laws.)

In the above equations, the starred scalar qantities are unknown, the

matrices Z and Cand hence ZI, Are characteristics of the network, the, applied

voltages and currents E. and I. are known and the' first M elements of E' are

zero because of the absence of internal voltage sources.

We can now assume that 'our inputs are among the applied external vani-

ables E 'and I., and that our outputs are among the starred unknowns. Since Eq.
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24 represents P.1+ M equations in P +'M unknow'ns, our outputs can be solved

for in terms of thel inputs alnd'othier- externally determined variables, but we do

!not ha've an explicit transfor matrix, Also, Eq.ý 24 involves a number of mesh

currents Which are completely intornail and the re fore of -no i1nte re st to usa in

ýdoscribing the transfer characteristic. of the network; there may also, be a num-

ber.o node" pairs where noexternal connection has been mad and the v-n n -oad oltages

across these are of no interest.

In writing the vectors E' and I -above, the voltages were arbitrarily

ordered so that known variables appear In a block, 'and the unknowns in an

adjacent block; however, q.2hodrealssof which voltages are known.[

As, long As P voltages and,,cu'rrents are given (any number 'May be identically

.zero) the P,+'M unknown voltages and currents may be found.

Sy partitioning the Z' matrix and the 'voltage and c'itr rent vectors, and

performing the necessary matrix operations (involving inversions which are

justified In reference (71), an equation of the following form can be obtained:

- Q (26)

*VP'

'wherebQ i a P x P.matrix derived from Z.' by partition, appropriate mtri

:opcrations on the submatrices, and reassemb ly.

Equ'a'ion 26 repr~esents the complete terminal solution for this partic -

ular..choice of dependent and independent variables. Jf this choice, is alte red,
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the manner in which ZI is partitioned changes and therefore the resultant Q is

changed.

U no connection is to be made to a certain node pair (torminal) the cor-

responding current is set equal to zero, and the corresponding voltage is omitted

as being of no Interest. This eliminates one row and one column from the mam

trik Q. This can be continued until only the terminals in Which we are interested

remain. 'We now have a matrix equation,.of the form:

wDhoQI r i • (7t)

where D is the vector of all dependent variables (primary and secondary outputs),
and I :is ,the vector of all independent variables (primary and secondary inputs)

and Q' is the matrix Q with all rows and columns not corresponding to input or

output terminals omitted.

We have now obtained a transfer function involving all terminal variables,

for a linear electric network. If the equations governing a linear multivariable

system are put into this form, will this give us additional Information about its

behavior? Note that this form can be obtained only after it has been decided

which variables are independent and which are dependent. The transfer matrix,

like the transfer function, remains unilateral in the sense that the role of in-

dependent and dependent variables cannot be interchanged without altering the

transfer characteristic. It is, however, bilateral in the sense that a given

terminal can simultaneously receive a signal and transmit one.

d. A Transfer Matrix Representation of a Multivariable System'

Let us define the vectors. Here v.'s are the dependent variables, u.'s

are independent variables, y.Is are true outputs, x.'s are true inputs, z. is the

secondary oucput conjugate to (existing at the same terminal as) x., and w. is

the secondary input conjugate to
" i. r'". ' i • ; .- -• 1C
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m n
z W

J tl Now an eaquation of the same form as 27, but describing an n + m terminal

'multiva r Iable system can be written as

where P is the transfer matrix analogous to Q' and

P ( P~(j)

r(m+ n)i (m +n)(m +n)

Now P may be partitioned into:

P [4.]where

ýp rn~ n (xn.n(n + ) ,rn~n+n)(nu
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-Then Eq. 29 isequivalentto the two equations

Y =AX + BW (30)

and

Z CX+ DW. (

-if we assume that the independent variables w1 conjugate to the outputs

a-y arall equal to zero, then Eq. 30 is reduced to Eq. -1. But this is Just what

"I s a ordinarily done In slngle'-varlable theory; if the output Is a position, all

known loads attached to the output shaft are considered to be a part of the sys-

tem, and the externally applied torque at the outpi~t shaft is therefore assumed

to be zero. The two independent variables are thereby reduced to one, the In-

put. Such a system is therefore a special case of a multlvarlable system which

has its secondary input equal to zero.

If the network described by the matrix P is the entire system under con-

ýslderation, the secondary outputs z .are of no interest, and Eq. 31 can be

Ignored. If, however, we wish to interconnect this network with another de-

scribed by the matrix PI, z acquires a new importance. Suppose the input

:signal x1 is to be obtained from the output y'I Of network P'. If x1 and y1 are

both voltages this result can be obtained by connecting terminal I to terminal

.I This connection requires at the same time that the two currents be equal,

or that z= w'1 The corresponding block diagram is:

W XY

Figure L4
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"Now, even though only y ' yn .are outputs of interest,, a influences

W" and hence y' and x 1 , and Eq. 31 can no longer be ignored.• This illustrates

Sthe reason why conventional transfer function blocks must be connected through,

isolating amplifiers or their equivalent. Isolation means that z, wl is sero

and that Eq. s ii valid.

If the P matrix is written for a single-input, single-output electrical

network, where it is assumed that voltage E1 is the input and the current I is

the output, Eq. 29 can be reduced to

S1y • p 1  , Pl 1 2E (32)

A comparison of these equations with, for example, Eq. 276 of refer-
ence [81 shows that the p's are (with the proper change of signs and subscripts)

Identical to the ordinary "yW parameters used to describe a two-port communi-

cation network. In fact the p's are the short-circuit driving point and transfer

admittances for the network. If Ii becomes the input and EZ the output, the

resulting p's will be the "z" parameters, or open circuit impedances. Other

choices of input and output variables will result in the "g" and "h" parameters.

The transfer matrix P is essentially only a generalization of these circuit

parameters for multi-port networks. (The "ABCD" or general circuit param-

Aeters which express E2 and 1. in terms of E and I1, while they are a per-

fectly accurate mathematical way of describing a system, cannot be considered

Sa specialcase of the P matrix because the corresponding equations imply thatthe

twoconjugate variables at one terminal are being considered simultaneously

independent.)

This example also serves to illustrate the fact that a general n-port bi-

nlateral network can be represented by 2 different transfer matrices,
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depending' upo n the choice of depen dent and independent variables. The P matrix

therefore is determined not only by the physical system'. but also by the way i

which it Is to be usad'.

a. A Matrix Definition for Output Intieraction

'Since the output's Y1 have boon considered dependent variables, We can-

'not discuss external forcing oft these variables without destroying the validity of

the essentially- unilateral transfer matrix' :However, if y1 is tpsiOn f out

put shaft i, if we apply enough torque to shaft Iowa can produce 'whatever disturb-

&nce Is desired, In y. The effect of a disturbance at output shaft I is really the

affect of the secondary input 'conjugate to y1 . if a, signal wj does not AffectYj

and a signal Wjdoes not affect, , then theý outputs y1 a;nd YjAre non-interact-,

'Ing. (n'the position example, If Yi Is obligedd to take up a position externally,

the torque w1 necessary to accomplish. this does not disturb yj and vice versa.)'

The P-canonical structure of reference [2) is defined as a system where

each output depends upon all inputs, but Is not affected by disturbance to any

othe r output. This condition is satisfied if matrix B of the preceding section

is diagonal. The: matrix A Will be identital. to the matrix P of reference (2].

In the V-canonical structure, every output interacts with every other

output. In the matrix representation, B 'Will have no non-zero terms. This

condition means that a disturbance applied to wit, the secondary input conjugate

to y.. will alter'the values of all other y's, as well, as that of yi.

The H-ca~nonical structure is defined in-reference (4] for a, system

having more outputs 'than inputs. If iii n =i, it is assumed that ... '

are not affected by ýoutput disturbances, bult that Y.+ .. y are affected by

adisturbance in any output. This condition results in a0 arxo h o-

lowing form:

fn
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PZ(n 4 1) .Z(n + . . . *. .0
i~ 0: P~ •) • 0 (3

IP (n l)' Pi (n + .)0 .......

P(i+ l)(n + 1) 'P(i + %l)(n + + 1) P(i + l)(n,+ m)

_ _j

Pm,.. *' Pn(n + m)n

Note that while the V-canonical structure is limited to systems having the same

number of outputs as inputs, there is no reason to require the presence of zeroes

In matrix B, regardless of the relation between m and n. The P matrix always

relates n + M dependent variables to n + m independent variables, and it is a

matter of physical and mathematical indifference whether n equals m. Com- *

pletely interrelated systems (those where a disturbance at any output terminal

is reflected in all outputs) can certainly exist, even though the number of out-

puts is greater than the number of inputs.

In the case of the P-canonical structure, the matrix B gives exactly the

same information as the assumption about structure, viz., the outputs are

completely non-interrelated in the sense considered here.

In the V-canonical structure the block diagram does not give, quantitative

information about the effect at Yi of a disturbance yj. f, however, in the P

matrix representation we let all independent variables (x's and w's) be zero

except w.,. then

Yi Pi(n + j)Wj . (34)

* But also - -

S~~y j(n ÷j)Wj""
Y
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Therefore, the effect on yof a disturbance at the jth terminal produc-
ing an output Yj. (pk / +)) Y

The fact that both Yj and yj are regarded as the effecti of a single cause

w does not alter the conclusion that an output yl corresponds to a disturbance

J

The P matrix can be completely determined externally for an Unknown

system only if all independent variables can be successively manipulated and

all dependent variables simultaneously observed. However, the degree to

which P must be known depends upon the application; it some of the secondary

outputs cannot be observed, the corresponding rows may be omitted from the

P matrix. Similarly, if some of the secondary inputs are always zero in a

given application, the corresponding columns may be omitted.

f. Bilateral versus Unilateral Matrices

In Section III c, -it was stated that for an electric network, the P ma-

trix can be derived from Kron's Z' matrix, and in reference (73 it is shown

that for a network of the type considered, Eq. 2 can always be solved for the

,,unknown quantities, whichever they may be. This is equivalent to saying that
whatever variables are taken to be inputs and outputs (subject to the constraint

that the current and voltage at one node pair are not both Inputs or outputs)

the corresponding P matrix can be found.

'But the P matrix represents n + m equations in 2(n + m) variables; if

the specification of any n + m uniquely determines the other n + m (and the

above statement implies that it does for electric networks or their analogs),

then the equations represented by P must hold regardless of which set of varia-

bles is conasdered to be unknown. In other words, to go from the matrix

representing one set of inputs to the P matrix of any other set, :it is only
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necespary to solve the equations for the now unknowns. Thus,although Eq. 29

was written under'the assumption that the terms of V were -results (that is,

determined by the independent variables U and the system equations), it con-

tinues to be valid oven if some of the u's become dependent and some of the

v's independent. For example, V a .l U.

In a sense, then, unless the system represented by P cannot be simu-

lated by an electric network, the P matrix descriptionis bilateral -its equa-

tions are valid regardless of the choice of input and output variables. The A

matrix, being only a part of the -P matrix, is not bilateral. Y x AX implies

that W a 0, while X " A'Y implies that Z 2 0. Hence A' is not generally equal

to A' 1 . It is, at least in many cases, this reason which causes single-varia-

"ble transfer functions to be limited to signals passing in one direction.

g. State Vector Method; Controllability and Observability

The P matrix, while providing information regarding output interaction,

suffers from the same disadvantages as the A matrix as far as initial conditions

are concerned. The state vector method,on the other handis particularly

.suited to problems involving initial conditions such as those arising in optimal

- control theory. For time-varying systems where Fourier transform methods

e .o fail and non-linear systems where the superposition principle is invalidated,

* the designer has recourse only to the state vectors or differential equation

S I method of representation.

, By definition, when the system is specified by equations of the form

3 x = Ax + Bu (35)

y=Cx +Du
"the system is assumed tobe completely defined by'the "n" state variables.

This implies that the designer has access to, all points within the system or
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a priori knowiedge of the order of the system. If every state of the system is

controllable then the state vector can be transferred from a given state toany

other desired state. It must be remembered that any non-singular linear trans-
formation Z x PX yields a different but equivalent s st of state variables -z.

"For the time4nvariant situation such a transformation does not affect stability

or controllability of the system. While the state vector representation is a
mathematical model of the system which describes it completely it is not Unique

and the state variables and consequently the equations themselves are chosen

to simplify manipulations.

Like the A matrix, the state vector method is unidirectional in charac-

-ter " .

Xlt)2*Xo+ 4 (t, r) B(lr) U(7) dr. • (36)
t
0

X(t) may be detcrmined from the initial condition X. and the input U(t) to the

system. Every state variable xi is a dependent variable and may be affccted

only by changing the input U(t). Hence,output interaction interpreted as the

effect of varying one output on any other otttput cannot be described using this

:representation. On the other hand, the homogeneous solution I' X gives com-

plete information regarding the effect of an initial condition of state variable

x.. on the response of the system in the absence of an input U(t).

A single-variable system which can be represented by an nth-order,
differential equation may also be expressed in state vector notation in the form

shown on the following page, where xis the output of the system and xi "

are its (n - I) derivatives. In the multivariable case, the state vector X(t)

-consists of n components of which only q are the actual outputs of the system

S. . . . . ... : • -
" .. r. = = = . " • • ." = t : @ = . " ' = " & "" • a t 4
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while (h q) are secondary state variables, some of ýwhich are linear combina -

tions, of the derivative. of these' outputs'. The reimaininjg ones acoprcisent unob-

servablo, state variables Which do not affect the terminal behavior of the system.

Under ziro initial conditions, the state vector repralontation may be converted

iJntoi an (n )c r) matrix of transfer functions' by the simple process of taking trans-

fo ms O tis a qxr-) submAtrix'is the same a s the A - matrix ofth sse .

Whean ,the la ,tte Ir is specifie d and the system has no unobservable state va .riables,

teremaining (n -q) rows of the (n X r) matrix are determined by the arbitrary

coice of the secondary state variables,

~AX4ZBu

X 01.0 1

0 1 01

0

-aa 1 -- a na 0

.When the system has unobservable state variables the transfer matrix

A co'ntains no information about the m. The actual order of the 'system cannot

be predicted using an transfer function representation. In other words, when'i

the transfer matrix is used it is tacitly assumed that unobservable and uncono-

tro~llable state variables are unimportant. Problaems in which controllabil ity.

anid observability do, play an important part must be handled by the state vector

notation.

IV. ý,Conciusion

The aim of the foregoing discussion has ýbelen a clarification of thep

limitations'and advantages of various methods of describing a multivariable

syte 'The results can be summarized in the followinig statements.
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(1) Thu ~conventiornd t ra nate r' matrix,, or A I mr ix I describes the

to rmin~al buh iir If Cinar, tro~nvratytm;hkdcrtonI

viilid fa r a giv~in6 tot Of Input and output vaibe.The A matrix providesj

no .i form",ition aboiait oh responw fth ytm hna cx',nl'aighal Is

applI I t CI 4Y out Pu t. It tha reftora d~o'4r %It dtint- utit irnteraction.* Sinc v

thetr.nsfr (ricio ar utairncd by dr ppia" t Crin in' thetil fre

AMCf rrntiala eqtitio'n 'containing the effcct Of~initial Cornditionis, propert~i.P.

like cort rco~hl 11ty Y An'd ob ic rv.Th)flIt v mu t bel con Ide red 1'rre invanrt for §yj-

tr ms reprnse: ted only by a trar~sk'r matrix.

hte 'A m.it~r~ix I.$ thus best st41ted to prb sIn Wh ich the ated

statf! brha.,Iior or t r ar. 9 inht responne with-zirro itialo~ltion % of pri-

Mlary Importance,,, anrd 0whre 6only terinial vrbisre Mfi~erest.

(2 h t~c:of a -vystum rep. eseted by a tr ntifer mtn. i~t

sgl-viriabl.r 9Uhb4YtCm 0 cric by Atrar s fe r funCtions ri~ ot provide

an" additio'Itl inf-mnat jun ibout termina'l behavior. :In pztrtikular, ou.tput

!nteraiction cwmrot be defincd by imans ot slicvh suhdiviiic~n. Exarc~y as In

Ahe ca-iC, o lingle -vari'ah!C systems, all configur-itions of Subsystems are.

eCquv CM C!t mtmtIci mlckls of the phjyilc I syzitem the ýchiue

particu?,ar c6iiurat ion depends o. ovri~c f ;nplto.

A sim'lair method of defining a mathematical structurc is the selection

of a particular set of state variables: an infinite number of s tate vector rep-

rea r. ta~tions are pos sible for any line!ar tim.e-invariant system and th c

-hoic- of any on fthese i s Again a m att er of c~onvenience.

*3)Prjbiemi- involving signa fo i. two directions at a give- te r-

rn mna I c arn be, studied b y n-ens of, th add tra.4 fe r matrix, or P matix

T' Ti.3 mat rix, -wh ile i t share3 the inability o f the A mat r ix to take into accouint
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non-zero initial conditions, can be useful In situations where output interac-

tions or non-isolated interconnections of systems are important.

(4) Of the methods considered in this report, the state vector repro-

-sntation is the only way of describing timevarying or non-linear multivaria-

ble systems, since-the frequency domain methods are no longer valid. This

approach provides complete information regarding the response to an Input

yvector U in the presence of initial conditions. It is most suitable for problems

In which system behavior is to be controlled directly in the time domain, and

in the area of optimal control. The use of digital computers for obtaining

approximate solutions -makes this method especially attractive. However,

athis method cannot be used for systems with distributed parameters because

the number of state variables becomes infinite.
.(5) The number of initial conditions that have to be specified to obtain

a unique solution depends on the order of the system, and is equal to the num-

ber of state variables. When the system is'described only by a transfer ma-

trix, however, the order of the system is not obvious. Hence, in situations

Where every state of the system must be independently controlled, only the

differential equation reproesentation should be used. It is only in such situations

th~At controllability and obsorvability are important.

b!

b!

I.

[*

i:• i: i-.< . ..
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